翻訳と辞書
Words near each other
・ Quashnet River
・ Quashquame
・ Quasi
・ Quasi alliance
・ Quasi at the Quackadero
・ Quasi corporation
・ Quasi Delay Insensitive
・ Quasi Fermi level
・ Quasi in rem jurisdiction
・ Quasi Object
・ Quasi Self Boot 93–96
・ Quasi Universal Intergalactic Denomination
・ Quasi-algebraically closed field
・ Quasi-analog signal
・ Quasi-analytic function
Quasi-arithmetic mean
・ Quasi-bialgebra
・ Quasi-biennial oscillation
・ Quasi-bipartite graph
・ Quasi-birth–death process
・ Quasi-category
・ Quasi-commutative property
・ Quasi-compact morphism
・ Quasi-constitutionality
・ Quasi-continuous function
・ Quasi-contract
・ Quasi-criminal
・ Quasi-crystals (supramolecular)
・ Quasi-delict
・ Quasi-derivative


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Quasi-arithmetic mean : ウィキペディア英語版
Quasi-arithmetic mean
In mathematics and statistics, the quasi-arithmetic mean or generalised ''f''-mean is one generalisation of the more familiar means such as the arithmetic mean and the geometric mean, using a function f. It is also called Kolmogorov mean after Russian scientist Andrey Kolmogorov.
==Definition==

If ''f'' is a function which maps an interval I of the real line to the real numbers, and is both continuous and injective then we can define the ''f''-mean of two numbers
:x_1, x_2 \in I
as
:M_f(x_1,x_2) = f^\left( \frac2 \right).
For n numbers
:x_1, \dots, x_n \in I,
the f-mean is
:M_f(x_1, \dots, x_n) = f^\left( \fracn \right).
We require ''f'' to be injective in order for the inverse function f^ to exist. Since f is defined over an interval, \frac2 lies within the domain of f^.
Since ''f'' is injective and continuous, it follows that ''f'' is a strictly monotonic function, and therefore that the ''f''-mean is neither larger than the largest number of the tuple x nor smaller than the smallest number in x.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Quasi-arithmetic mean」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.